|                                  | INDIAN                    | SCHOOL AL WADI AL KABIR      |                         |  |  |
|----------------------------------|---------------------------|------------------------------|-------------------------|--|--|
| Class: IX                        | Department:<br>SUBJECT: P | SCIENCE 2024 – 25<br>PHYSICS | Date: 06.06.2024        |  |  |
| Worksheet No: 02<br>WITH ANSWERS | CHAPTER /                 | UNIT: MOTION – PART 2        | Note:<br>A4 FILE FORMAT |  |  |
| NAME OF THE STUDENT:             |                           | CLASS & SEC:                 | ROLL NO.:               |  |  |

## **OBJECTIVE TYPE OF QUESTIONS (1 MARK):**

- 1) A body moves in a uniform circular motion. Its speed is constant but its velocity is
  - a) zero
  - b) changing
  - c) constant
  - d) infinite
- 2) Suppose a boy is enjoying a ride on a merry go round which is moving with a speed of 10 m/s. it implies that the boy is
  - a) At rest
  - b) Moving with no acceleration
  - c) In accelerated motion
  - d) Moving with uniform velocity
- 3) When a car driver travelling at a speed of 10 m/s applies brakes and brings the car to rest in 20 s, then the retardation will be:
  - a)  $2 \text{ ms}^{-2}$
  - b)  $-2 \text{ ms}^{-2}$
  - c)  $0.5 \text{ ms}^{-2}$
  - d) -0.5 ms<sup>-2</sup>
- 4) Which of the following distance time graph represents uniformly accelerated motion?



- 5) A velocity-time graph for zero acceleration represents
  - a) A straight line parallel to the time axis
  - b) An upward slope
  - c) A downward slope
  - d) A curved line

6) In the following graphs, which graph shows retardation (negative acceleration)



### 7) If a body is moving at constant speed in a circular path, its

- a) Velocity is constant and its acceleration is zero
- b) Velocity and acceleration are both changing in direction only
- c) Velocity and acceleration are both increasing
- d) Velocity is constant and acceleration is changing direction
- 8) If the displacement of an object is proportional to square of time, then the object moves with:
  - a) Uniform acceleration
  - b) Uniform velocity
  - c) Uniform speed
  - d) None of the above

### 9) An object moving with a constant velocity has:

- a) Zero acceleration
- b) Positive acceleration
- c) Negative acceleration
- d) Infinite acceleration

10) The motion of blades of an electric fan around the axle is an example of

- a) Uniform circular motion
- b) Linear motion
- c) Non uniform motion
- d) Uniform retarded motion

## ASSERTION AND REASONING TYPE OF QUESTIONS (1 MARK):

**DIRECTION:** In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- a) Both A and R are true, and R is the correct explanation of A.
- b) Both A and R are true, and R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true
- 11) Assertion: The area under the velocity-time graph represents the distance traveled by the object.Reason: The slope of the velocity-time graph gives the acceleration of the object.
- 12) Assertion: Motion of satellites around their planets is considered an accelerated motion Reason: During their motion, the speed remains constant while the direction of motion changes continuously.
- 13) Assertion: The distance-time graph of a uniformly accelerated motion is a straight line.Reason: In uniformly accelerated motion, distance is directly proportional to the square of time.
- 14) Assertion: A body can have acceleration even if its speed is constant.Reason: In uniform circular motion, speed of body is constant but its velocity continuously changes
- 15) **Assertion:** A body moving with a constant speed in a straight line is said to have uniform acceleration. **Reason:** In uniform acceleration, both speed and direction are not constant.

# VERY SHORT ANSWER TYPE OF QUESTIONS: (2 MARK)

- 16) Write any two examples of uniform circular motion
- 17) Velocity time graph for the motion of an object in a straight path is a straight line parallel to the time axis. Find the nature of motion of the body and also draw the shape of distance time graph for this type of motion.
- 18) Four Cyclist A, B, C, D starts at the same point and at the same time and move in a straight line to reach destination. They all move with uniform velocities. They reach the destination in the following order C →A→B→D

Answer the following questions

- a. If the displacement-time graph is plotted for each cyclist, which will be having highest slope
- b. Arrange the cyclist in decreasing order of velocity
- 19) A car travels with a velocity 10 m/s with uniform acceleration of 5 ms<sup>-2</sup>. Calculate the final velocity when it has travelled 30 m.
- 20) Using the following data draw displacement time graph for a moving object.

| Time (hour)  | 0 | 2 | 4 | 6 | 8 | 10 | 12 |
|--------------|---|---|---|---|---|----|----|
| Displacement | 0 | 1 | 2 | 2 | 4 | 3  | 2  |
| (m)          |   |   |   |   |   |    |    |

Page 3 of 12

- 21) Draw a velocity time graph of a stone thrown vertically upwards and then coming downwards after attaining the maximum height.
- 22) A train 100m long is moving with a velocity of 60 kmh<sup>-1</sup>. Find the time it takes to cross the bridge 1 km long.
- 23) An air-plane accelerates down a runway at 3.20 m/s<sup>2</sup> for 32.8 s until is finally lifts off the ground. Determine the distance travelled before takeoff.
- 24) A Jeep starts from rest and accelerates uniformly over a time of 5.21 seconds for a distance of 110 m. Determine the acceleration of the Jeep.
- 25) How is uniform motion in a straight line different from uniform circular motion? Explain.

#### SHORT ANSWER TYPE OF QUESTIONS (3 MARK):

26) The graph given below is the distance-time graph of an object.



- (i) Find the speed of the object during first four seconds of its journey.
- (ii) How long was it stationary?
- (iii) Does it represent a real situation? Justify your answer.
- 27) A bus was moving with a speed of 54 km/h. On applying brakes, it stopped in 8 seconds. Calculate the acceleration and the distance travelled before stopping.

#### 28) What do you infer if:

- a. Distance –time graph is straight line
- b. Velocity -time graph is curved
- c. Displacement -time is zig zag

29) Four speed-time graphs are shown below. Explain the type of motion in each case.



### LONG ANSWER TYPE OF QUESTIONS (5 MARK):

30) A driver of train travelling at a speed of 15m/s applies brakes and retards the train uniformly. The train stops in 5 seconds. Another train B is travelling on a parallel track with a speed of 10m/s. its' driver applies the brakes and the train stops in 10 seconds retarding uniformly.

(a) Plot speed-time graphs for train A and Train B.

(b) Calculate graphically which of the trains travelled farther after the brakes were applied.

31) The graph given alongside shows how the speed of a car changes with time.



- a. What is the initial speed of the car?
- b. What is the maximum speed attained by the car?
- c. Which part of the graph shows zero acceleration?
- d. Which part of the graph shows varying retardation?
- e. Find the distance travelled in first 8 hours.
- 32) A car is moving on a straight road with a uniform acceleration. The following table gives the speed of the car at various instant of time.

| Time(s)     | 0 | 10 | 20 | 30 | 40 | 50 |
|-------------|---|----|----|----|----|----|
| Speed (m/s) | 5 | 10 | 15 | 20 | 25 | 30 |

(i) Draw the shape of speed-time graph representing the above sets of observations.

(ii) Find the acceleration of the car.

33) A car a moving at rate of 72 km/h and applies brakes which provide a retardation of 5ms<sup>-2</sup>.

- (i) How much time does the car takes to stop?
- (ii) How much distance does the car cover before coming to rest?
- (iii) What would be the stopping distance needed if speed of the car is doubled?
- 34) The v-t graph for a moving body in a straight line is shown below. Calculate the distance and displacement travelled by the body in 6 seconds:



# CASE STUDY TYPE OF QUESTIONS (4 MARK):

- 35) We know that the circumference of a circle of radius *r* is given by  $2\pi r$ . If the body takes *t* seconds to go once around the circular path of radius *r*, the speed *v* is given by  $v=2\pi r/t$ . When an object moves in a circular path with uniform speed, its motion is called uniform circular motion. Refer the paragraph and answer the following questions:
  - a) Is the speed of an object in uniform circular motion constant? Why or why not?
  - b) If the radius of a circular path is doubled, how does it affect the period of motion?
  - c) Can an object in uniform circular motion have a changing speed? Explain.
  - d) A car is traveling along a circular path with a radius of 50 meters. If it completes one revolution in 20 seconds, what is the car's speed?

|    | ANSWER KEY                                                                                                                                                                                                                                              |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1  | b) Changing                                                                                                                                                                                                                                             |  |  |  |  |  |
| 2  | c) In accelerated motion                                                                                                                                                                                                                                |  |  |  |  |  |
| 3  | c) 0.5 ms <sup>-2</sup>                                                                                                                                                                                                                                 |  |  |  |  |  |
| 4  | (d)                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 5  | a)A straight line parallel to the time axis                                                                                                                                                                                                             |  |  |  |  |  |
| 6  | (d)<br>Velocity                                                                                                                                                                                                                                         |  |  |  |  |  |
| 7  | b)Velocity and acceleration are both changing in direction only                                                                                                                                                                                         |  |  |  |  |  |
| 8  | a)Uniform acceleration                                                                                                                                                                                                                                  |  |  |  |  |  |
| 9  | a)Zero acceleration                                                                                                                                                                                                                                     |  |  |  |  |  |
| 10 | a)Uniform circular motion                                                                                                                                                                                                                               |  |  |  |  |  |
| 11 | b) Both A and R are true, and R is not the correct explanation of A.                                                                                                                                                                                    |  |  |  |  |  |
| 12 | a) Both A and R are true, and R is the correct explanation of A.                                                                                                                                                                                        |  |  |  |  |  |
| 13 | d)A is false but R is true                                                                                                                                                                                                                              |  |  |  |  |  |
| 14 | a) Both A and R are true, and R is the correct explanation of A.                                                                                                                                                                                        |  |  |  |  |  |
| 15 | d) A is false but R is true                                                                                                                                                                                                                             |  |  |  |  |  |
| 16 | A car moving around a circular track at a constant speed<br>A spinning top                                                                                                                                                                              |  |  |  |  |  |
| 17 | When the velocity-time graph for the motion of an object in a straight path is a straight line parallel to the time axis, it indicates that the object is moving with a constant velocity.<br>$\times (m) \int_{t(s) \to t(s)}^{t(s) \to t(s)} t(s) ds$ |  |  |  |  |  |
| 18 | a) D<br>b) D, B, A and C                                                                                                                                                                                                                                |  |  |  |  |  |



| 23 | $s = ut + \frac{1}{2}at^2$                                                                                                                              |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Where s = distance travelled                                                                                                                            |
|    | u = Initial velocity                                                                                                                                    |
|    | t = Time                                                                                                                                                |
|    | a = acceleration                                                                                                                                        |
|    | Putting the values, we get;                                                                                                                             |
|    | $s = 0 \times 32.8sec + \frac{1}{2} \times 3.2ms^{-2} \times (32.8sec)^{2}$                                                                             |
|    | s = 1.6 × 32.8 × 32.8                                                                                                                                   |
|    | s = 1.6 × 1075.84                                                                                                                                       |
|    | s = 1721.344                                                                                                                                            |
|    | s ~ 1721.3m                                                                                                                                             |
|    |                                                                                                                                                         |
| 24 |                                                                                                                                                         |
| 24 |                                                                                                                                                         |
|    | using second eq of motion $s = ut + 1/2at^2$                                                                                                            |
|    | as u=0, a = $\frac{2s}{t^2} = \frac{2*110}{5.21^2} = 8.10 \text{m/s}^2$                                                                                 |
|    | $t^2 = 5.21^2$                                                                                                                                          |
|    |                                                                                                                                                         |
| 25 | Uniform Linear motion:                                                                                                                                  |
|    | 1. An object is said to move in uniform linear motion , if it travels in straight line                                                                  |
|    | and covers equal DISTANCE in equal time interval.                                                                                                       |
|    | 2. No change in direction.                                                                                                                              |
|    | <ol> <li>SPEED is constant and constant velocity.</li> <li>Acceleration is zero.</li> </ol>                                                             |
|    | Example: A car moving forward at speed of 40km/h towards North direction.                                                                               |
|    |                                                                                                                                                         |
|    | Uniform circular motion:                                                                                                                                |
|    | 1. When a body moves in circular path with uniform speed , it's motion is called                                                                        |
|    | uniform circular motion.                                                                                                                                |
|    | 2. Motion is said to be accelerated.                                                                                                                    |
|    | 3. SPEED is constant but direction of motion changes every point.<br>Example:                                                                           |
|    | An Athelete running in a circular path.                                                                                                                 |
| 26 |                                                                                                                                                         |
| 20 |                                                                                                                                                         |
|    | (i) The line OP, i.e. the first 4 seconds indicates uniform speed. Thus the speed of the object during this time interval will be the slope of line OP. |
|    | $=\frac{75-0}{4-0}=18.75 \text{ m/s}$                                                                                                                   |
|    | 4-0                                                                                                                                                     |
|    | (ii) PQ is parallel to time axis, so speed is zero. Thus, the object is stationary between the time interval 14 s to 4 s.                               |
|    | Thus, the object is stationary for 14 - 4 = 10 s.                                                                                                       |
|    |                                                                                                                                                         |
|    | (iii) OP situation is real as distance is increasing with time                                                                                          |
|    |                                                                                                                                                         |
|    | PQ is also real situation as distance can remain the same with increase in tine.                                                                        |

| 27 | (u) = 54 km/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $=\frac{54(1000)}{3600}$ m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | = 15 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Final velocity (v) = $0 \text{ m/s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | Time taken(t) = 8 s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | So acceleration, $a=rac{v-u}{t}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | Put the values in the above equation to get the value of acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | $a = rac{0-15}{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | $= -1.875 \text{ m/s}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 28 | i. Speed is constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | ii. Acceleration is not uniform.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | iii. Nonuniform velocity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 29 | a) The first segment (linear decrease) indicates uniform deceleration, meaning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | object is slowing down at a constant rate until it stops. The second segment (linear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | increase) indicates uniform acceleration, where the object speeds up at a constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | b) This represents non-uniform acceleration. The changes in speed are not constant,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | indicating varying acceleration. The speed increases at different rates and the graph's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | curvature suggests changes in the rate of acceleration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | c) The first segment (linear increase) indicates uniform acceleration, where the object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | speeds up at a constant rate. The second segment (linear decrease) indicates uniform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | d) The first segment (linear increase) indicates uniform acceleration, where the object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | speeds up at a constant rate. The second segment (linear decrease) indicates uniform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.<br>$\int_{0}^{\frac{1}{9}} \int_{0}^{\frac{1}{9}} \int_{0}^{\frac$ |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.<br>$ \frac{1}{1000} \int_{0}^{0} \int_{0$                                                                                                                                                                                                                                                                       |
|    | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.<br>$\int_{1}^{10} \int_{0}^{10} \int_{0$                                                                                                                                                                                                                                                                                                                           |
| 30 | speeds up at a constant rate. The second segment (linear decrease) indicates uniform deceleration, where the object slows down at a constant rate.<br>$ \frac{1}{1000} \int_{0}^{0} \int_{0$                                                                                                                                                                                                                                                                       |



Page **11** of **12** 

| d) Speed = distance/time = $2\pi r / t = 2(3.14)50/20 = 15.7 m/s$ |  |
|-------------------------------------------------------------------|--|

| Prepared by:               | Checked by: |
|----------------------------|-------------|
| Ms. Vivette Shirly Lasrado | HoD Science |